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On the Relationship between 
Discounting and Entropy of 
Dynamic Optimization Models 

Tapan Mitra 

1. Introduction 

In a standard aggregative dynamic optimization framework 
(0, u, 8), where ° is the transition possibility (technology) set, u is 
a (reduced form) utility function defined on this set, and 0< 8 < 1 
is a discount factor, the relation between the magnitude of the 
discount factor and the extent of complicated behavior generated 
by the corresponding (optimal) policy function has been a topic 
of extensive study. 

Boldrin and Montrucchio (1986) showed that any twice continu­
ously differentiable function can be a policy function of an appro­
priately defined dynamic optimization model. However, when the 
C2 function was taken to be the logistic map (h( x) = 4x( 1- x) for 
x E [0,1]), which is well-known to exhibit complicated behavior, 
the dynamic optimization model (obtained by using their con­
structive method) for which the logistic map was the policy func­
tion was seen to have an extremely small discount factor (about 
0.01). Subsequently, Sorger (1992a) showed that if the policy func­
tion of any dynamic optimization model is the logistic map, then 
its associated discount factor must be smaller than 0.5. 

These results suggested that substantial discounting might be 
necessary to obtain complicated (or "chaotic") optimal behavior. 
This was confirmed by Sorger (1992b) when he showed, using the 
theory of stochastic dominance, that if any dynamic optimization 
model (0, u, 8) exhibits a period-three cycle, then the discount 
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factor, 8, must satisfy 

8< (V5 - 1)/2 ~ 0.618 (1.1) 

In subsequent work, Sorger (1994) refined the above bound to 

8< 0.5479 (1.2) 

The bound was further refined to 

8 < [( V5 - 1/2]2 ~ 0.3819 (1.3) 

in Mitra (Chapter 11) and Nishimura and Yano (Chapter 12). Fur­
thermore, the bound in (1.3) was shown to be "exact" in the sense 
that whenever 8 < [(J5 - 1)/2]2, one can construct a transition 
possibility set, 0, and a reduced form utility function, U, such that 
the dynamic optimization model (0, U, 8) has an optimal program 
exhibiting a period-three cycle. 

A period-three cycle is a special case of what is known as "topa­
logical chaos", which oecurs whenever there is a periodic cycle of 
aperiod not equal to apower of 2. [Topological chaos implies the 
existence of an infinite number of periodic cycles of distinct pe­
riodieities, as weIl as the existenee of an uncountable "scrambled 
set"; see Section 2 for details]. Thus, if we foeus on the existence of 
any periodic point of period q = np, where n > 1 is an odd integer 
and p = 2k , with kanon-negative integer, it can be shown [see 
Mitra (Chapter 11)] that, combining (1.3) with the "Sarkovskii 
order" (see Proposition 2.1 below), the following bound on the 
discount factor ean be obtained: 

(1.4) 

In studying the closely related phenomenon of "turbulenee" (see 
Seetion 2 for a definition), Mitra (1994) established that if any 
dynamic optimization model (0, U, 8) exhibits turbulence, then the 
discount factor, 8, must satisfy 

8 < (1/4) (1.5) 
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Furthermore, the bound in (1.5) is "exact" in the sense that when­
ever 8 < 0.25, one can construct a transition possibility set, 0, and 
a utility function, u, such that the dynamic optimization model 
(0, u, 8) exhibits turbulence. Using the "Sarkovskii order" and 
(1.5), the bound obtained in (1.4) can be refined to 

(1.6) 

as shown in Mitra (1994). 
All these results certainly indicate a dose relationship between 

discounting and complex optimal behavior. However, this relation­
ship could be made more precise if we had a convenient numerical 
measure of complicated behavior. From the topological point of 
view, such a numerical measure is the "topological entropy" of a 
dynamical system. Thus, one could proceed to examine whether 
the upper bound on the discount factor goes on decreasing as the 
extent of complicated optimal behavior goes on increasing. This 
approach was pioneered by Montrucchio (1994), who established 
(under a strong concavity assumption on the utility function) that 

8 ::; 1/ e1jJ(h,A) (1. 7) 

where A is a compact, invariant set contained in the interior of 
the "state space" of the dynamic optimization model, and 'IjJ(h, A) 
is the topological entropy on the set A of the poliey function, h, 
when the discount factor is 8. Montrucchio and Sorger (1994) have 
shown that the inequality holds even when the strong concavity 
assumption on the utility function is replaced by a relatively mild 
strict concavity assumption on the utility function [of the type 
used in Section 3 of this chapter]. 

In this chapter, we do three things. First, we establish the 
Montrucchio-Sorger result (1.7) by using what I have called the 
"value-Ioss approach" to minimum impatience problems. Focusing 
on "value-Iosses" (that one suffers by deviating from certain price­
supported activities) has been the cornerstone of the approach of 
McKenzie [see McKenzie (1986) for a comprehensive survey] to 
problems of "turnpike" theory. It appears to be a natural concept 
to focus on for the study of complicated optimal behavior as weIl, 
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and the inequality (1.7) is seen to rest firmlyon aversion of the 
well-known "value-Ioss lemma", which was introduced to (final­
state) turnpike theory by Radner (1961), and which has occupied 
center-stage in this land in consumption-oriented turnpike theory] 
literat ure thereafter. 

Second, under an additional assumption of "bounded steepness" 
of the utility function (see Section 5 for details) we extend the 
Montrucchio-Sorger result to establish that 

8 :::; l/e'I/J(h,X) (1.8) 

where X is the compact state space itself. A problem in applying 
the Montrucchio-Sorger result to obtain discount factor restric­
tions for topological chaos is that, in general, given a policy func­
tion it is difficult to identify compact invariant sets in the interior 
of the state space. There is, of course, no such difficulty in applying 
formula (1.8). 

Noting that topological chaos may not be "observable", we con­
sider a natural alternate measure of chaos, metric entropy, and 
show (using a mathematical result comparing the magnitude of 
the topological entropy with the metric entropy of a dynamical 
system) that 

(1.9) 

where J.-t is a probability measureon the Borel O'-field of X, invari­
ant under h, and cI>/-I(h, X) the metric entropy. 

Results (1.8) and (1.9) [Theorems 5.2 and 5.3 of this chapter] 
summarize the relationship between discounting and complicated 
behavior in dynamic optimization models, where "complicated be­
havior" is measured in the topological sense in (1.8) and in the 
measure-theoretic sense in (1. 9) . 

Third, I study the implications of result (1.8) for periodic and 
turbulent optimal programs. The concept of topological entropy 
has been thoroughly studied in the theory of dynamical systems, 
and powerful methods have been developed for computing the 
topological entropy of dynamical systems, exhibiting periodic and 
turbulent behavior, by Block, Guckenheimer, Misiurewicz and 
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Young (1980). We use these results to show that the inequality 
(1.8) yields the discount factor restriction 

8~(v5-1)/2 (1.10) 

for period-three cycles, and 

8 ~ (1/2) (1.11) 

for turbulence. These are fairly strong bounds, but turn out to be 
the square-roots of the "exact" bounds obtained in (1.3) and (1.5) 
respectively. This naturally prompts us to ask whether there is a 
more refined relations hip than (1.8) between the discount factor 
and the topological entropy, which would yield the exact discount 
factor restrictions for period-three cycles and turbulence as special 
cases. We leave this as an open question. 

2. Chaos 

2.1 Periodic Orbits 

Let I be a compact interval in ~, the set of reals. Let j : I ---+ I 
be a continuous map of the interval I into itself. The pair (I, 1) 
is called a dynamical system; I is called the state space and j the 
law of motion of the dynamical system. 

We write jO(x) = x and for any integer n 2: 1, jn(x) = 
j[jn-l(x)]. If x E I, the sequence T(X) = {jn(x)}ü is called the 
trajectory from (the initial condition) x. The orbit from x is the 
set ')'(x) = {y : y = jn(x) for some n 2: O}. 

A point x E I is a fixed point of j if j(x) = x. A point x E I is 
called a periodic point of j if there is k 2: 1 such that jk (x) = x. 
The smallest such k is called the period of x. [In particular, if x E I 
is a fixed point of j, i t is periodic wi th period 1]. If x E I is a 
periodic point with period k, we also say that the orbit of x (or 
trajectory from x) is periodic with period k. 

The following fundamental result on the existence of periodic 
orbits is due to Sarkovskii (1964). A good discussion of this result 
is contained in Block and Coppe} (1992). 
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Proposition 2.1: Let the positive integers be totally ordered in 
the following way: 

3 -< 5 -< 7 -< 9 -< ... -< 2.3 -< 2.5 -< ... -< 22 .3 -< 22.5 

-< ... -< 23 -< 22 -< 2 -< 1. 

If f has a periodic orbit of period n and if n -< m, then f also 
has a periodic orbit of period m. 

2.2 Aperiodic Orbits 

In order to study the nature of trajectories which are not peri­
odic, it is useful to define a "scrambled" set. A set SeI is called 
a scrambled set if it possesses the following two properties: 

(i) If x, y E S with x -=I- y, then 

lim sup Ifn(x) - fn(y)1 > 0 
n--+oo 

and 

(ii) If x E Sand y is any periodic point of f, 

limsuplfn(x) - fn(y)1 > 0 
n--+oo 

Thus trajectories starting from points in a scrambled set are 
not even "asymptotically periodic". Furthermore, for any pair of 
initial states in the scrambled set, the trajectories move apart and 
return elose to each other infinitely often. 

The following theorem, due to Li and Yorke (1975), is fundamen­
tal in establishing a connection between the existence of period­
three cyeles and the existence of an uncountable scrambled set. 

Proposition 2.2: Assume that there is some point x* in I such 
that: 

f3(X*) ::; x* < f(x*) < f2(x*) 
(or f3(X*) 2:: x* > f(x*) > f2(X*)) (2.1) 
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Then (i) for every positive integer k = 1,2, ... , there is a periodic 
point of period k. 

(ii) there is an uncountable scrambled set S c 1. 

We will say that the dynamical system (1,1) exhibits Li- Yorke 
chaos if conditions (i) and (ii) of Proposition 2.2 are satisfied. It 
is easy to check that (1,1) exhibits Li-Yorke chaos if and only if 
(1, f)has a periodic point of period three. 

Generalizing the Li-Yorke result, and using Sarkovskii's theo­
rem, Li, Misiurewicz, Pianigiani, and Yorke (1982) established the 
following result. 

Proposition 2.3: Suppose f has a periodic point of period 
which is not apower of 2. Then (i) f has infinitely many periodic 
points of different periods; and (ii)1 has an uncountable scrambled 
set. 

2.3. Turbulence1 

The map f : 1 -t 1 will be called turbulent if there exist com­
pact (non-degenerate) subintervals J, K with at most one common 
point such that 

J u K C f (J) n f (K) 

The concept of turbulence is related to the occurrence of peri­
odic points in the following result. 

Proposition 2.4: (i) 1f f : 1 -t 1 is turbulent then f has 
periodic point of all periods. 

(ii) 1f f : 1 -t 1 has a periodic point of odd period n > 1, then 
P is turbulent. 

IThe definition of turbulence used here follows Block and Coppel (1992). The phe­
nomenon is also referred to as a "2-horseshoe" by Alseda, Llibre and Misiurewicz (1993). 
The concept has evolved from the earlier dicussions of Ruelle and Takens (1971) and Lasota 
and Yorke (1977). 
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2.4. Topological Entropy2 

There is a well-known measure of the extent of complicated 
behavior that a dynamical system can exhibit, and it is called 
"topological entropy". Let A be a compact subset of I, which is 
invariant under I (that is, I(A) cA). Let J = (J1, ... , Jp ) be 

p 

a finite open cover of A (that is, U Ji ::J A). Denote by 1-1 J 
i=1 

the open cover (f-lJ1, ... , I-1Jp ). If J = (J1 , ... , Jp ) and J' = 

(JL ... , J~) are open covers of A, then their join JV J' is the open 
cover consisting of all sets of the form Ji n Jj far all i E {I, ... , p} , 
j E {I, ... , q}. Let N (J) be the minimum number of sets in the 
cover J which still covers A. Then, we can define 

'Ij;(f, A, J) = lim (l/n) log N(JV 1-1 JV .. V I-n+l J) 
n--->oo 

The topological entropy of I on A is defined as 

'Ij;(f, A) = sup'lj;(f, A, J) 
J 

where the supremum is taken over all open covers J. Far A = I, 
we often write 'Ij;(f) instead of 'l/J(f, I). 

We will use a more "operational" definition of topological en­
tropy, which we now provide. A finite set E c A is called (n, c)­
separated (n = 1,2, ... and c > 0) if for every x, y E E, x i= y, 
there is 0:::; k < n such that I/k(x) - Ik(y)1 2:: c. Let s(n, c) denote 
the maximal cardinality of an (n, c )-separated set. We define 

'Ij;€(f, A) = limsup(l/n) log s(n, c) 
n--->oo 

and the topological entropy of I as 

2The formal definition of topological entropy was given by Adler, Konheim and McAn­
drew (1965). Bowen (197la) provided the more "operational" definition (which we use here). 
In our context, the two definitions are equivalent; for a proof, see Bowen (1971b). 
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The following result, due to Misiurewicz (1979), relates topological 
entropy to the existence of periodic points with period which is 
not equal to apower of 2. 

Proposition 2.5: The following two statements are equivalent: 
(i) f has a periodic point of period which is not apower of 2;(ii) 
f has positive topological entropy. 

We will say that a dynamical system (1, f) exhibits topological 
chaos if f has a periodic point whose period is not apower of 2. 
This definition follows Block and Coppel (1992). 

A justification for adopting the above definition of topological 
chaos is that, while it is weaker than the period-three condition 
of Li and Yorke it is strong enough to ensure the existence of an 
uncountable scrambled set. On the other hand, the definition is 
weak enough so that a dynamical system (1,1) exhibits topological 
chaos if and only if it has positive topological entropy. 

2.5. Metric Entropy 

A difficulty with the notion of "topological chaos" is that it 
may not be "observed", and therefore might be unsuitable for the 
purpose of signaling "unpredictability" of outcomes of a dynamical 
system. If by chaos we mean unpredictability, the natural measure 
of it is metric entropy (also known as "measure-theoretic entropy" 
or "Kolmogorov-Sinai invariant"), since it measures the "uncer­
tainty" in an experiment about the outcome, or equivalently the 
"information" gained by conducting the experiment. 

Let gJ be the Borel cr-field of 1, and V a probability measure on 
gJ. Thus, (1, gJ, v) is a probability space. If fis gJ-measurable, then 
v is called invariant under h if v(E) = v(J-1(E)) for all E in gJ. 

Suppose the dynamical system (1,1) has an invariant measure 
v. We call J = {J1 , ... , Jp } a (finite) measurable partition of 1 
if the Ji are disjoint measurable subsets of 1, and U Ji ~ 1. If 

z 

J = {J1 , ... , Jp } is a finite measurable partition of 1, then the 
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entropy 01 the partition J is 

p 

H(f,I, v, J) = - L v(Ji ) log v(Ji ) 

i=1 

If J = {J1, ... , Jp } is a measurable partition, we denote by 1-1 J 
the measurable partition {/- 1 J1 , •.• ,1-1 Jp }. If J = {J1 , ••• , Jp } and 
J' = {JL ... , J~} are measurable partitions of X, then JV J' is the 
measurable partition consisting of sets of the form Ji n Jj für all 
i E {l, ... ,p}, j E {l, ... , q}. We can then define 

if>(f, I, v, J) = lim (l/n)H(f, I, v, JV 1-1 Jv. .. V l-n+1 J) 
n~oo 

Finally, the metric entropy is defined as 

if>v(f, 1) = supif>(f, I, v, J) 
J 

where the supremum is taken over all partitions J of I for which 
if>(f, I, v, J) < 00. 

3. Dynamic Optimization 

3.1 The Model 

The framewürk is described by a triplet (0, u, 8), where 0, a 
sub set of ?R+ x ?R+, is a transition possibility set, u : 0 -7 ?R is 
a utility lunction defined on this set, and 8 is the discount lactor 
satisfying 0 < 8 < l. 

The transition possibility set describes the states z E ?R+ that 
it is possible to go to tomorrow, if one is in state x E ?R+ today. 
We define a correspondence r : ?R+ -7 ?R+ by r(x) = {y E ?R+ : 
(x, y) E O} for each x E ?R+. 

A program {Xt}ü from xE ?R+ is a sequence satisfying 

Xo = x and (Xt, Xt+1) E 0 for t 2: 0 

If one is in state x today and one moves to state z tomürrüw 
(with (x, z) E 0) then there is an immediate utility (or "reward" 
or "return") generated, measured by the utility function, u. 
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The discount factor, 8, is the weight assigned to tomorrow's 
utility (compared to today's) in the objective function. The dis­
count rate (associated with the discount factor, 8) is given by 
p = (1/8) - l. 

The following assumptions are imposed on the transition possi­
bility set, 0, and the utility function, u: 

Al: (i) (0,0) E 0, (ii) (O,z) E 0 implies z = o. 
A2: 0 is (i) closed, and (ii) convex. 
A3: There is e > 0 such that (x, z) E 0 and x ~ e implies 

z < x. 
A4: If (x, z) E 0 and x' ~ x, 0 :::; Zl :::; z then (x', Zl) E O. 

Clearly, we can pick 0 < ( < e, such that if x > ( and (x, z) E 0, 
then z < x. It is straight forward to verify that if (x, z) E 0, then 
z :::; max( (, x). It follows from this that if {Xt}ü is a program from 
x E R+, then Xt :::; max((, x) for t ~ O. In particular, if x :::; (, 
then Xt :::; ( for t ~ O. This leads us to choose the closed interval, 
[0, (l as the natural state space of our model, which we will denote 
by X. We denote the interval [0, el by Y. 

The following assumptions are imposed on the utility function, 
U: 

A5: U is concave on 0; further if (x, z) and (x', Zl) are in 0, 
and x =f x', then for every 0 < A < 1, 
U(A(X, z)+ 
(1 - A)(X' , Zl)) > AU(X, z) + (1 - A)U(X' , Zl). 

A6: U is upper semi-continuous on O. 
A7: If x, x' E Y, (x, z) E 0, x' ~ x and 0 :::; Zl < z, then 

u(x' , Zl) ~ u(x, z). 

We will refer to a triplet (0, u, 8) satisfying (A.1) - (A.7) as a 
dynamic optimization model. 

A program {Xt}O° from x ~ 0 is an optimal program if 

00 00 

L 8tu(xt, Xt+l) :::; L 8tu(Xt, Xt+1) 
o 0 
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for every pragram {Xt}ZO fram x. 
Under (A1)-(A7), there is a unique optimal pragram fram every 

xE ~+. 

3.2 Value and Policy Functions 

The value junction V : ~+ ----+ ~ is defined by 

00 

V(x) = L 8tu(xt, Xt+1) 
o 

where {xtlZO is the optimal pragram fram x E ~+. 
The policy junction h : ~+ ----+ ~+ is defined by 

where {xtlZO is the optimal program fram x E ~+. 
The praperties of the value and policy functions can be sum­

marized in the following result. This is based on Dutta and Mitra 
(1989) and Stokey, Lucas and Prescott (1989). 

Proposition 3.1: (i) The value junction V is strictly concave 
and continuous on ~+ and non-decreasing on Y. Further, V is 
the unique continuous junction on Y [0, e] which satisfies the 
junctional equation oj dynamic programming: 

V(x) = max [u(x, y) + 8V(y)] 
yEr(x) 

(ii) The policy junction h satisfies the jollowing property: jor 
each x E ~+, h(x) is the unique solution to the constrained maxi­
mization problem: 

Maximize u(x, y) + 8V(y) 
Subject to y E r(x) 

Further, h is continuous on !R+. 

In view of the definition of the policy function h, the optimal 
program fram x E X is the trajectory {ht(x)}ZO generated by the 
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policy function. Thus, an optimal program from x E X can be 
called periodic (with period k) if x is a periodic point of h (with 
period k). 

4. Duality Theory 

4.1 Price Characterization of Optimality 

Optimality can be characterized in terms of dual variables or 
shadow prices. The basic result of the theory, describing this char­
acterization, can be stated as follows. [A full discussion can be 
found in Weitzman (1973) and McKenzie (1986)]. 

Proposition 4.1: (a) If {Xt}ü is an optimal program from 
x E X and x > 0, and there is some (x, y) E n with y > 0, 
then there is a sequence {Pt}ü of non-negative prices such that 
for t;::: 0, 

(i) 8tV(xt) - PtXt ;::: 8tV(x) - PtX for all x ;::: ° 
(ii) 8tu(xt, Xt+l) + Pt+l Xt+l - PtXt ;::: 8tu(x, Y) + Pt+lY - PtX for 

all (x, y) E n 
(iii) lim PtXt = ° 

t--+oo 

(b) If {Xt}ü is a program from x;::: 0, and there is a sequence 
{Pt}ü of non-negative prices such that for t ;::: 0, (ii) and (iii) 
above are satisfied, then {xdü is an optimal program from x. 

If {xdO' is a program from x ;::: 0, and {pdü is a non-negative 
sequence of prices satisfying (i), (ii) and (iii) of Proposition 4.1(a), 
we will say that the program {Xt}ü is price supported by {Pt}ü. 
When {xdü is price supported by {Pt}ü, we refer to {pdü as 
a sequence of present-value prices. Associated with {Pt}ü is a se­
quence {Pt}ü of current value prices defined by 

Pt = (pt/8t ) for t ;::: ° 
If the value function has finite steepness at zero, it is possible 

to choose the current value prices associated with any optimal 
program to be uniformly bounded above. To establish this, we 
proceed formally as follows. Normalize u(O, 0) = 0, and note then 
that V(O) = o. Then for all x in X, (x,O) is in n (by (A4)) and 
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u((, 0) ~ u(x, 0) ~ 0 by (A7). Further, far all x in X with x > 0, 
V(x) ~ 0 and [V(x)jx] is decreasing in x by Proposition 3.1. We 
define 

p = lim [V(x)jx] 
x~o+ 

In the above definition, p can be infinite. If p happens to be finite, 
we say that V has "finite steepness" . 

Proposition 4.2: Let (0, u, 8) be adynamie optimization model. 
Suppose there is (x, f)) E 0 such that x E X and f) > O. Further, 
suppose that 

p = lim [V(x)jx] < 00 
x~o+ 

(4.1) 

1f {Xt}ü is an optimal program from any x E X, there is a price 
support {Pt}ü of {xdü such that 

(4.2) 

where ß is given by 

ß - max (p, [u((, 0) - u(x, f)) + px]/8f)) (4.3) 

Proof: Consider, first, any optimal program {Xt}ü from x in 
X, with x > O. There are two cases to consider (i) Xt > 0 for all 
t ~ 0; (ii) Xt = 0 for some t. 

In case (i), using Proposition 4.1 (i), 

V(Xt) - PtXt ~ 0 for t ~ 0 

so that Pt :S [V(Xt)jXt] :S p:S ß for t ~ O. 
In case (ii), let T be the first period for which Xt = O. Then 

T ~ 1, Xt > 0 for t = 0, ... , T - 1, and Xt = 0 for t ~ T. By the 
argument used in case (i), Pt ~ p für t = 0, ... , T - 1. Für t = T, 
using Proposition 4.1 (ii), we get 

U(XT-l, 0) - PT-IXT-I ~ u(x, f)) + 8PTf) - PT-IX 
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so that PT ~ [U((, O) - u(i, f)) + pi]jbf) ~ ß by (4.3). 
If Pt ~ PT for all t > T, then we are done. Otherwise, let T be 

the first period (> T) for which Pt > PT· Then PT- I ~ PT < PT' 
and using Proposition 4.1 (ii), we get far all (x, z) E 0, 

Furthermare, since XT-I = 0, we have 

o 2 V(x) - PT-IX for all X 2 0 

Thus, defining Pf = Pt for t = 0, ... , T -1 and Pf = PT- I far t 2 T, 

and P~ = bt Pf for t 2 0, we see that {paü provides a price support 
to {Xt}ü, and Pf ~ ß for t 2 O. 

The final step is to obtain a price support for the optimal pro­
gram {O}ü from 0, which satisfies (4.2). Since p < 00, we have 
V~(O) = p < 00. Thus, by concavity of V, we have 

V(O) - PO 2 V(x) - Px for all X 2 0 (4.4) 

where P = V~(O) = p. Then, by the induction argument of Weitz­
man (1973) [see also McKenzie (1986)], we can get a price support 
{Pt}ü of the "zero program" {O}ü, with Po = Po = P, obtained 
in (4.4). Now, following the analysis of case (ii) above (identifying 
period T with period 0), we get a price support {page of {O}ü, 
such that Pf ~ ß for t 2 O. 

4.2 The Value-Loss Method 

The value-loss method is based on the observation that at the 
prices supporting an optimal program, there is no activity which 
yields a higher "generalized profit" at any date (value of utility 
plus value of terminal stocks minus value of initial stocks at that 
date) than the activity chosen along the optimal program at that 
date. In other words, there are no arbitrage possibilities available 
at the supporting prices. 

This observation leads to a basic tool for analyzing minimum 
impatience results (see Mitra (Chapter 11) for a proof) which we 
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state in the following proposition. 3 

Proposition 4.3: Let (0, u, 8) be adynamie optimization model. 
Suppose {Xt}ü is an optimal program with price support {ptlü, 
and {Ytlü is an optimal program with price support {qtlü. De­
noting (pt/8t) by Pt and (qt/8t) by Qt for t 2': 0, we have 

(i) 8(Pt+1 - Qt+1)(Yt+1 - Xt+1) ~ (Pt - Qt)(Yt - Xt) for t 2': 0 
(ii) (Pt - Qt)(Yt - Xt) 2': 0 for t 2': 0 
Furthermore, if Yt =1= Xt for some t, then the inequalities in (i) 

and (ii) are strict for that t. 

5. On a Relationship between Discounting and 
Complexity 

5.1 The Montrucchio-Sorger Result 

If we consider topological entropy to be an appropriate measure 
of "complexity" of a dynamical system, then a natural way to 
study the relationship between discounting and complicated opti­
mal behavior is to find the relationship between the discount factor 
of a dynamic optimization model and the topological entropy of its 
policy function. This is the approach taken in Montrucchio (1994), 
where he establishes (under strong concavity assumptions on the 
utility function) that if (0, u, 8) is a dynamic optimization model 
with policy function h, Ais a compact, invariant set contained in 
the interior of X, and 'ljJ(h, A) is the topological entropy of h on 
A, then the discount factor, 8, is related to the topological entropy 
by the inequality 

(5.1) 

Subsequently, it has been shown in Montrucchio and Sorger 
(1994) that the strong concavity assumption on the utility func-

3The inequalities of Proposition 4.3 must be very familiar objects from the point of 
view of the turn pike theory literat ure, where they suggest a natural choice of a Lyapunov 
function for the study of global asymptotic stability of optimal growth pathsj see especially 
Brock and Scheinkman (1976), Cass and Shell (1976) and McKenzie (1986). The same 
inequalities have figured prominently in the literat ure on the intertemporal decentralization 
of the transversality conditionj see especially Brock and Majumdar (1988) and Dasgupta 
and Mitra (1988). 
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tion can be dispensed with in deriving the inequality (5.1). In 
particular, it follows from their result that inequality (5.1) holds 
under the standard assumptions used in Section 3 of this chapter. 

In this section, we will show how the relationship (5.1) (which 
I refer to henceforth as the Montrucchio-Sorger result) can be de­
rived using the value-loss approach, thereby providing a unified 
view of the minimum impatience results obtained in the literat ure 
on chaotic optimal behavior. 

In order to establish (5.1), we need two preliminary results. 
To describe the results, define Z X - {O}, and let A be a 
compact invariant set contained in Z. Given any x and y in A, let 
{Pt}ü and {qt}ü be the price sequences supporting the optimal 
programs from x and y respectively. Denote by {Pt}ü and {Qdü 
the "current" price sequences corresponding to {Pt}ü and {qt}ü 
respectively, and to simplify notation denote Po by P and Qo by 
Q. 

We know from Proposition 4.3 that 

(P - Q)(y - x) 2: 0 (5.2) 

and the inequality in (5.2) is strict when y -=1= x. 
We need to establish, first, that there is ß > 0, such that for all 

x,y in A, 

(P - Q)(y - x) ~ ßlx - yl (5.3) 

This amounts to establishing a uniform bound on the initial period 
supporting prices associated with optimal programs starting from 
initial stocks in A. 

We also need to establish that given any c: > 0, there is o:(c:) > 0 
such that 

x, Y E A and Ix - yl 2: c imply (P - Q)(y - x) 2: o:(c:) (5.4) 

One recognizes this, of course, as aversion of the well-known 
"value-loss lemma" appearing prominently in the turnpike liter­
ature since Radner (1961). 

We now proceed to establish these two results formally. 
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Lemma 5.1: Let A be a campact invariant set cantained in Z. 
There is ß > 0 such that far all x, y in A, 

(P - Q)(y - x) ~ ß Ix - yl (5.5) 

Proof: Given A, we can find a E Z such that A c [a, Cl. Denote 
V~(a) by ß. 

Without 10ss of generality, suppose y ~ x. Then 

(P - Q)(y - x) ~ P(y - x) ~ V~(x)(y - x) (5.6) 

Since x E A, we have V~(x) ~ VJa) = ß. SO (5.6) yields (5.5) 
immediately. 

Lemma 5.2: Let A be a campact invariant set cantained in Z. 
Par every c > 0, there exists a(c) > 0 such that 

x, Y E Aand Ix - yl ~ cimply (P - Q)(y - x) ~ a(c) (5.7) 

Proof: Given A, we can find a E Z such that Ac [a, Cl. Denote 
VJa) by ß. 

If the Lemma were not true, there would exist a sequence (X S , yS) 
S = 1,2, ... , with xS, yS E A and Ixs - ySI for all s, such that 
(PS - QS)(yS - XS) ---+ 0 as s ---+ 00 . 

Now, using (i) ofProposition 4.1, 0 ~ ps ~ VJXS) ~ VJa) = ß, 
o ~ QS ~ VJyS) ~ VJa) = ß, so we can find a subsequence s' 
of s, such that I ps' I ---+ P, I QS' I ---+ Q, xS' ---+ x and yS' ---+ Y as 
S' ---+ 00. 

Denoting (y+x)/2 by z, and using (i) of Proposition 4.1 again, 
V(XS) - psxs ~ V(z) - pSz for all s ~ 1. Thus, by the continuity 
ofV, 

V(x) - Px ~ V(z) - pz (5.8) 

Since Ix s' - yS'1 ~ c for all s', we have Ix - yl ~ c. Thus, using the 
strict concavity of V, we get 

(5.9) 
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Using (5.8) and (5.9), we obtain 

V(x) - Px > V(y) - Py (5.10) 

Using yS and QS in place of XS and ps respectively in the above 
steps, we can obtain similarly 

V(y) - Qy > V(x) - Qx (5.11) 

Combining (5.10) and (5.11) yields 

(P - Q)(y - x) > 0 (5.12) 

But since (PS' - QS')(yS' - XS') _ 0 as s' _ 00, and ps' _ P, 
QS' _ Q, yS' _ y, xS' _ x as s' _ 00, we have 

(P - Q)(y - x) = 0 (5.13) 

which contradicts (5.12) and establishes the result. 
We are now in a position to state and prove (a version of) the 

Montrucchio-Sorger result. 

Theorem 5.1: Let (0, u, 8) be adynamie optimization model 
and let h : X - X be its policy junction. Assume that A is 
a compact subset oj X which is contained in Z, and which is 
invariant under h. Then, 

Proof: Let n be a positive integer, e a positive real number, 
and B an (n, c)-separated subset of A. For every x, y in B with 
x =f. y, there exists t E {O, 1, ... , n-1} such that Iht(x) - ht(y) I > c. 
Using Proposition 4.3, we have 

8t(Pt - Qt)(Yt - Xt) ::; (P - Q)(y - x) (5.15) 

where Xt = ht(x), yt = ht(y), P = Po and Q = Qo. 
U sing Lemma 5.1, we get 

(P - Q)(y - x) ::; ßlx - yl (5.16) 
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Using Lemma 5.2 and IXt - Ytl > c, we get 

(5.17) 

since (Xt, Xt+l, ... ) is an optimal program from Xt with current value 
supporting prices (Pt, Pt+b ... ), and a similar remark applies to Yt 
and Qt. 

Combining (5.15), (5.16), (5.17), we get 

(5.18) 

and since t ~ n - 1, and 0 < 8 < 1, 

(5.19) 

Since B C A c X, where X = [0, (], and B is an (n, c )-separated 
set, the number of elements of B must satisfy the inequality: 

Card B < [ß(/8na(c)] + 1 < [2ß(/8na(c)] (5.20) 

Using (5.20), we obtain 

'ljJE(h, A) = limsup(1/n) log[2ß(/8n a(c)] 
n-400 

= limsup[(1/n) log[2ß(/a(c)] + (1/n) log(1/8t] 

~ limsup(1/n) log(1/8t = log(lj8) 
n-4OO 

This implies that 'ljJ(h, A) = lim'ljJdh, A) ~ log(1/8). This yields 
E-40 

e~(h,A) ~(1/ 8) 

which is equivalent to (5.14). 

Remark 5.1: Notice that if Ais a compact subset of X which 
is contained in the interior of X, and which is invariant under h, 
then, by Theorem 5.1, we have 
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which is the Montrucchio-Sorger result for our aggregative frame­
work. 

5.2 Discounting and Topological Entropy 

A possible difficulty in applying Theorem 5.1 of the previous 
section is in identifying suitable compact subsets of Z which are 
invariant under h. Notice that while X itself is clearly a compact 
set which is invariant under h, the Montrucchio-Sorger result does 
not imply that 

(5.21 ) 

and it is clear from our method of proof (and also from the proofs 
of Montrucchio (1994) and Montrucchio and Sorger (1994)) that 
this is not an easy extension of Theorem 1. 

If, for example, his the well-known logistic map (h(x) = 4x(1-
x) for x E X - [0,1]), then h is topologically transitive; that 
is, for any pair of open sets UI , U2 in X, there exists a positive 
integer k such that hk (UI ) n U2 is non-empty. For a proof of this 
fact, see Devaney (1989, p. 51). Then, by Lemma 37 of Block and 
Coppel (1992, p. 155), every proper closed subset of [0,1], which 
is invariant under h, has empty interior. That is, these sets are 
"thin", and would not include, for instance, any open intervals. 
They would include finite sets, for instance those consisting of the 
points of a periodic cycle (of periodicity exceeding 1), but clearly 
the topological entropy of h on such sets is zero. Thus, compact 
subsets of Z which are invariant under h, might not be the sets 
that we would necessarily want to focus on. 

This difficulty seems especially acute in the one-dimensional 
case, and less so in the multi-dimensional setting, for which the re­
sults of Montrucchio (1994) and Montrucchio-Sorger (1994) were 
developed. For instance, if h: R2 ---+ R2 is the Henon map 
(h l (Xl, X2) = 1 + X2 - 1.4 xi, h2(XI, X2) = 0.3 Xl) then, as Henon 
(1976, p. 76) demonstrates, there is a rectangular region in the 
interior of R2 which is mapped into itself by h. 

In this section, we show under an additional assumption, how 
the formula (5.21) can be obtained. The extra assumption we use 
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for this purpose involves "bounded steepness" of the reduced-form 
utility function, a concept introduced to the optimal growth liter­
ature in Gale (1967). 

We now proceed formally as follows. Recall from Section 4 that 
we normalized u(O, 0) = 0, so V(O) = O. Then for all x E X, (x,O) 
is in ° (by (A4)) and u(x, 0) 2:: 0 by (A7). Further, [u(x,O)jx] is 
decreasing in x on X, by (A5). Our additional assumption is: 

A8: a lim [u(x,O)jx] < 00 
- X->O+ 

Fro~ this point onwards, we refer to a triplet (0, u, 8) as a 
dynamic optimization model if it satisfies assumptions (A1)-(A8). 

We now proceed to establish the basic relationship between the 
discount factor and the topological entropy of the corresponding 
policy function. 

Theorem 5.2: Let (0, u, 8) be a dynamic optimization model 
and let h : X ~ X be its policy junction. Then 

(5.22) 

Proof: Notice, first, that if h(x) = 0 for all x E X, then clearly 
'IjJ(h, X) = 0 and (5.22) holds trivially. Thus we concentrate on 
the situation where there is some x E X such that h(x) > O. 

Recall from Section 4 that we defined: 

p - lim [V(x)jx] 
x->o+ 

We subdivide our proof into two cases: (i) p < 00 (ii) p = 00. 

Case I: [p< 00] 

In this case, defining ß by (4.3), and applying Proposition 4.2, 
if {Xt}ü is any optimal program from x E X, then there is a price 
support {ptlü of {xtlü such that 
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Then, we can follow the proofs of Lemma 5.1, Lemma 5.2 and 
Theorem 5.1 to obtain (5.22), replacing A by X in the appropriate 
steps of the proofs. 

Case 11: [p = 00] 

We can choose 0 < a < (, such that 

[V(x)jx] > [0)(1 - 8)] for 0 < x ~ a (5.23) 

where a is given by (A8). 
We claim, first, that 

h(x) > x for 0 < x ~ a (5.24) 

For, suppose, on the contrary that there is some 0 < x ~ a, for 
which h(x) ~ x. Then, using Proposition 3.1, V(x) = u(x, h(x)) + 
8V(h(x)) ~ u(x, h(x)) + 8V(x), so that 

V(x) ~ u(x, h(x))j(l - 8) 

Using (A7), u(x, h(x)) ~ u(x, 0), and we get 

[V( )j ] < [u(x,O)jx] < a 
x x - (1 _ 8) - (1 - 8) 

which contradicts (5.23) and establishes (5.24). 
Second, we claim that 

h(x) > 0 for 0 < x ~ ( (5.25) 

Suppose, on the contrary, there is some 0 < x ~ ( such that 
h(x) = O. Then {Xt}ü given by (x, 0, 0, .... )is the optimal program 
from x. Given (5.24), Proposition 4.1 can be used to get a price 
support {Pt}ü of {Xt}ü. Denoting (pt/8t) by Pt for t ~ 0, we have 

V(Xl) - gXI ~ V(y) - Ply for all y ~ 0 

Since Xl = 0, and V(O) = 0, we get 

V(y) ~ P1y for all y ~ 0 (5.26) 
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But, by letting y ---t 0 in (5.26), we then contradict the fact that 
p = 00. This establishes (5.25). 

Since h is continuous on [a, Cl, (5.25) implies that there is b' > 0 
such that 

h(x) ~ b' for all x E [a, Cl (5.27) 

Define b = min[a, b'l and A = [b, Cl. Then, we claim that A is a 
compact, invariant set. Since compactness is clear, we proceed to 
check the invariance property. We have either (I) b = a, or (II) 
b i= a. If b = a, then b' ~ a = b, and (5.27) implies that h(x) ~ b 
for x E [b, Cl. If b i= a, then b = b' < a, and (5.27) implies that 
h(x) ~ b for all x E [a, Cl. For x E [b, a), we have h(x) > x by 
(5.24), and so h(x) ~ b. Thus for all x E [b, Cl, we get h(x) ~ b. 
Since h( x) ::; C for all x E [b, Cl, we have established that A = [b, Cl 
is an invariant set. 

If 0 < x < b, then there is some T large enough such that 
hT(x) E A and so ht(x) E A for t ~ T. If x E A, then ht(x) E A 
for t ~ o. If x = 0, then ht(x) = 0 for t ~ o. 

00 

Define C = n ht(X). Then C is compact and invariant, and 
t=O 

00 

C = Cl U C2 where Cl = n ht(A) and C2 = {O}. Clearly, Cl and 
t=O 

C2 are compact, invariant sets. 
Now, 7jJ(h, X) = 7jJ(h, C) by Corollary 4.1.8, p. 196 of Alseda, 

Llibre and Misiurewicz (1993). Furt her , 7jJ(h, C2) = 0, since from 
the definition of topological entropy, if W is any finite set, then the 
topological entropy of any map g : W ---t W is zero. Thus, using 
Lemma 4.1.10, p. 197 of Alseda, Llibre and Misiurewicz (1993), 
7jJ(h, C) = 7jJ(h, Cl). Summarizing, we have 7jJ(h, X) = 7jJ(h, Cl). 

Since Cl C A, we note that Cl is a compact, invariant set in Z, 
and so by Theorem 5.1, 

Since 7jJ(h, Cl) = 7jJ(h, X), we have established (5.22). 

Remark 5.2: We have, so far, not been able to construct a proof 
of Theorem 5.2, which dispenses with assumption (A8). However, 
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this assumption establishes the strong claim in (5.24), and that 
does not seem to be necessary for the rest of the proof in case (ii) 
to be valid. 

5.3 Discounting and Metric Entropy 

We have already indicated in Section 2.6 that topological chaos 
may not be observable, and so topological entropy might not be 
an appropriate measure of the complexity of a dynamical system. 
In this context, a natural alternative measure to consider is the 
metric (or measure-theoretic) entropy of a dynamical system, and 
to conclude that the system exhibits complicated behavior when 
the metric entropy is positive. 

Interestingly, if we adopt this point of view, our analysis so far 
is still seen to be extremely useful in studying the relation between 
discounting and complicated behavior of a dynamical system. This 
is dear by noting the basic relations hip between topological and 
metric entropy, due to Goodwyn (i968).4 

Proposition 5.1: Let (f,1) be a dynamical system (as in Sec­
tion 2.1), and M (f, 1) be the set of all f -invariant probability 
measures on the Borel sets of I. 1f f-L E M(f,I), then 

ip/1(f, 1) ~ 'l/J(f, 1) (5.28) 

In view of Proposition 5.1 and Theorem 5.2, we have the follow­
ing result relating discounting and metric entropy. 

Theorem 5.3: Let (f!, u, 8) be adynamie optimization model 
and let h : X --+ X be its policy function. 1f f-L is an h-invariant 
probability measure on the Borel sets of X, then 

(5.29) 

4The result of Goodwyn (1968) is applicable to more general dynamical systems than 
ours. It turns out that the topological entropy, 1fJ(f, 1), is the supremum over all!J. E M(f, I) 
of the metric entropies, 'P/L(f,I). This was first established by Dinaburg (1970). For a 
discussion of these results in the most general setting, see Goodman (1971). 
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Remark 5.3: Nishimura, Sorger and Yano (Chapter 9) have 
provided an example in which for every 0 < 8 < 1, there is a dy­
namic optimization model (n, u, 8) such that the policy function, 
ho, exhibits ergodic chaos. However, as they have noted, the metric 
entropy of ho converges to zero as 8 converges to 1. Theorem 5.3 
shows that this is true not only for that example but in general; 
that is, if (ns , U s , 8s ) is a sequence of dynamic optimization models 
with policy functions hs(s = 1,2, ... ), and 8s ---+ 1 as s ---+ 00, then 
the metric entropy of hs must converge to zero at s ---+ 00. 

·6. Discount Factor Restrictions for Turbulence and 
Topological Chaos 

In this section, we demonstrate the usefulness of the 
Montrucchio-Sorger result, by deriving a number of implications 
of it. Specifically, we show how the result can be used to derive 
discount factor restrictions for policies exhibiting turbulence and 
topological chaos. 

The basic technical background that we need to study discount 
factor restrictions for periodic programs is a result due to Block, 
Guckenheimer, Misiurewicz and Young (1980) which provides a 
formula for the topological entropy of any continuous nmction 
exhibiting a periodic program with period not equal to apower of 
2. We state this result here for ready reference. 

Proposition 6.1: Let 1 : I ---+ I be a continuous map with an 
orbit 01 period q = np where n > 1 is odd and p = 2k with k ~ O. 
Then 

where .An is the unique positive root of the equation 

zn - 2zn- 2 - 1 = 0 

(6.1) 

(6.2) 

If we combine Proposition 6.1 with Theorem 5.2, we obtain the 
following result immediately. 

Theorem 6.1: Let (n, u, 8) be adynamie optimization model 
which exhibits aperiodie program of period q = np where n > 1 is 
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odd and p = 2k with k 2: o. Then 

(6.3) 

where An is the unique positive root 01 the equation 

(6.4) 

Given Theorem 6.1, all one needs to obtain suitable discount 
factor restrictions for policy functions which exhibit periodic pro­
grams of positive topological entropy (and, therefore, which ex­
hibit topological chaos) is an accurate calculation of the (unique) 
positive root of the polynomial in (6.4). 

We illustrate this point with the simplest case, where the dy­
namic optimization model (0, u, 8) exhibits a period-three cycle. 
Here, of course, n = 3, p = 1 (so k = 0) and q = np = 3. 

The polynomial in (6.4) reduces to 

Z3 - 2z - 1 = 0 (6.5) 

It is easy to verify that 

(6.6) 

is the unique positive root of (6.5). Thus, the discount factor re­
striction for a period-three cycle, by applying Theorem 6.1, is 

Now, the magnitude (1/ A3) can be written as 

2/(/5 + 1) = 2(/5 - 1)/(/5 + 1)(/5 - 1) 

= 2( /5 - 1)/(5 - 1) 

= (/5 -1)/2 

(6.7) 

This calculation leads to the following Corollary, which was first 
established by Sorger (1992b) by using entirely different methods. 
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Corollary 6.1: Let (n, u, 8) be a dynamic optimization model, 
which exhibits a period-three cycle. Then 

8::; (V5 - 1)/2 (6.8) 

In order to obtain a discount factor restriction for a turbulent 
policy function, we need the following mathematical result. 

Proposition 6.2: Let f : 1 ~ 1 be a continuous map. Let 
J}, ... , Jp be closed intervals with pairwise disjoint interiors and let 
A = (aik) be the p x p matrix defined by 

a. = {I i/ Jk c /(Ji ) 
2k 0 otherwise 

Then 'IjJ(J) :::: log A, where A is the maximal eigenvalue 0/ A. 

If we combine Proposition 6.2 with Theorem 5.2, we obtain the 
following result immediately. 

Theorem 6.2: Let (n, u, 8) be a dynamic optimization model, 
with policy /unction, h : X ~ X. 1/ h exhibits turbulence, then 

8 ::; (1/2) (6.9) 

Proof: If h exhibits turbulence, then we can find closed subin­
tervals J1 and J2 of X, with at most one point in common, such 
that 

Then the interiors of J1 and J2 are disjoint, and the matrix A = 

(aik) of Proposition 6.1 is 

A=[~ ~J 
The maximal eigenvalue of A is 2. So, applying Proposition 6.1, 
we get 

'IjJ(J) :::: log 2 (6.10) 
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Using (6.10) and Theorem 5.2, we get (6.9). 
We can use Theorem 6.1 to obtain an upper bound on the dis­

count factor, 8, that must be satisfied in order that a dynamic 
optimization model (0, u, 8) yield a periodic optimal program of 
odd period greater than one. 

Corollary 6.2: Suppose (0, u, 8) is adynamie optimization 
model with policy junction, h. Let n > 1 be any odd integer. Ij 
h has a periodic orbit oj period n, then 

8< (1/V2) 

Proof: Using Theorem 6.1, we know that 

where An is the unique positive root of the equation 

zn - 2zn- 2 - 1 = 0 

(6.11) 

(6.12) 

(6.13) 

Define g( z) = zn - 2zn- 2 - 1 for z 2: O. For z = J2, {g( z) / zn-2} = 

z2 - 2 - (1/ zn-2) < z2 - 2 = O. And if z 2: V2 + {1/( J2)n-2}, 

thenz2 -2-(I/zn - 2 ) > z2-2-{I/(J2)n-2} 2: 2+{I/(J2)n-2}-
2 - {1/( J2)n-2} = o. Thus we know that 

(6.14) 

Combining (6.12) and (6.14), we get (6.11). 
More generally, Proposition 6.1, Theorem 5.2, and (6.14) can be 

used to obtain upper bounds on discount factors that must hold 
in order that optimal programs be periodic with period q = np 
where n > 1 is odd and p = 2k with k 2: O. 

Corollary 6.3: Suppose (0, u, 8) is adynamie optimization 
model with policy junction, h. Let n > 1 be an odd integer, k 
be a non-negative integer and q = n2k . Ij h has a periodic orbit 
with period q, then 

(6.15) 
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7. An Open Question 

There are two results which provide "exact" discount factor re­
strictions for chaotic behavior in aggregate dynamic optimization 
models, the first dealing with the case of period-three cycles (see 
Mitra (Chapter 11) and Nishimura and Yano (Chapter 12)), and 
the second dealing with turbulence (see Mitra (1994b)). We state 
them here in order to provide a self-contained discussion.5 

Proposition 7.1: Let (0, u, 8) be a dynamic optimization model, 
with a policy function h. If h exhibits a period-three cycle, then 

8 < [( J5 - 1)/2]2 (7.1) 

Conversely, if 8 satisfies (7.1), then one can construct a transition 
possibility set, 0, and a reduced form utility function u, such that 
the dynamic optimization model (0, u, 8) has an optimal program 
exhibiting a period-three cycle. 

Proposition 7.2: Let (0, u, 8) be a dynamic optimization model, 
with a policy function h. If h exhibits turbulence, then 

8 < (1/4) (7.2) 

Conversely, if 8 satisfies (7.2), then one can construct a transi­
tion possibility set, 0, and a reduced form utility function, u, such 
that the dynamic optimization model (0, u, 8) has a policy function 
which exhibits turbulence. 

The observation we would like to make is that neither the dis­
count factor restriction (7.1) for period-three cycles nor the dis­
count factor restriction (7.2) for turbulence can be obtained from 
Theorem 5.2 which provides the basic relationship between the 
discount factor and the topological entropy of the corresponding 
policy function. In fact, as we have seen in Section 6, Theorem 5.2 

5These results were proved for dynamic optimization models satisfying (A.l)-(A.7). 
Clearly, the "necessity part" of the results remain valid for dynamic optimization models 
satisfying (A.l)-(A.8). Furthermore, it can be checked that the examples used to demon­
strate the "sufficiency part" satisfy (A.8), besides (A.l)-(A.7). 
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yields a discount factor restriction of (V5 - 1)/2 for period-three 
cycles (Theorem 6.1) and a discount factor restriction of (1/2) for 
turbulence (Theorem 6.2). Interestingly, these restrictions are ex­
actly the square roots of the exact restrictions appearing in (7.1) 
and (7.2) respectively. 

The open quest ion which this observation naturally raises is 
whether there is a more refined relationship (than is provided in 
Theorem 5.2) between the discount factor and the topological en­
tropy, which would yield the exact discount factor restrictions for 
period-three cycles and turbulence [in (7.1) and (7.2) respectively] 
as special cases. 


